New TAVI Devices

Martin B. Leon, MD

Columbia University Medical Center Cardiovascular Research Foundation New York City

19th April 22-25, 2014 COEX, Seoul, Korea www.summit-tctap.com

Disclosure Statement of Financial Interest TCTAP2014: Seoul, Korea; April 22-25, 2014 Martin B. Leon, MD

Within the past 12 months, I or my spouse/partner have had a financial interest/arrangement or affiliation with the organization(s) listed below.

Affiliation / Financial Relationship

- Grant / Research Support
- Consulting Fees / Honoraria
- Shareholder / Equity

Company

- Abbott, Boston Scientific, Edwards Lifescience, Medtronic
- Angioscore, Meril Lifescience, Micell,
- Apica, Angiometrix, Backbeat, Caliber, Cappella, Claret, Coherex, Elixir, GDS, Medinol, Mitralign, Valve Medical

New TAVI Devices

Background

New TAVI Devices *Current limitations...*

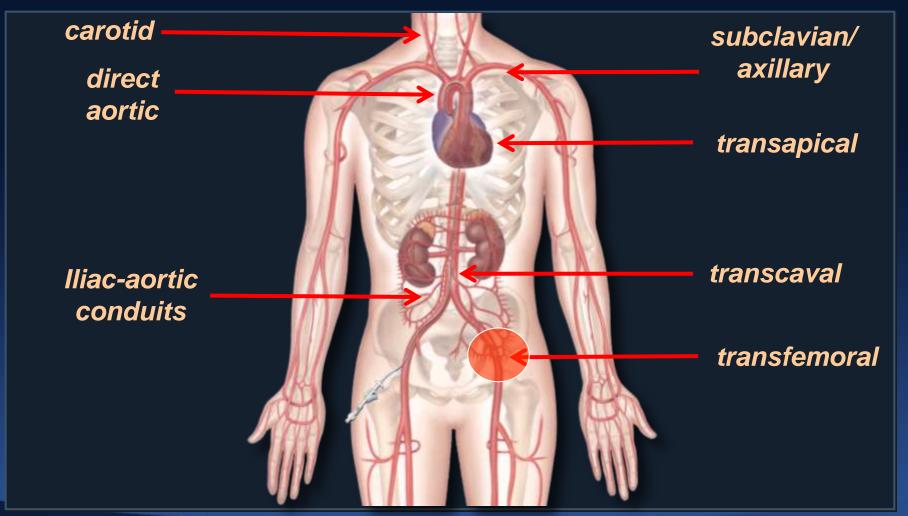
- System profiles still too large for "universal" transfemoral access – entry sheath "OD" (esp. for large valves) generally >18 Fr
- Inaccurate and unpredictable positioning at optimal landing zone (ideally, without need for RV pacing)
- Increased permanent pacemaker requirements
- Increased para-valvular regurgitation
- Increased procedure-related strokes
- 4Rs recapture, reposition, redeploy, and retrieve (if necessary)

New TAVI Devices *Current limitations...*

- Infrequent but important complications (e.g. coronary occlusion and annulus rupture)
- Optimal frame geometry, opening force, hemodynamics, and valve durability

PVT - The Foundation...

Edwards *Flex Cath* Delivery System Evolution



TAVR – 2014 Access Alternatives

New TAVI Devices

Current Standards + Pipeline

Edwards THV Evolution

•Stainless Steel Frame •Equine Pericardial Tissue Stainless Steel Frame
Bovine Pericardial Tissue

- Cobalt-Chromium Frame
- Bovine Pericardial Tissue
- Semi-closed leaflets
- Reduced crimped profile

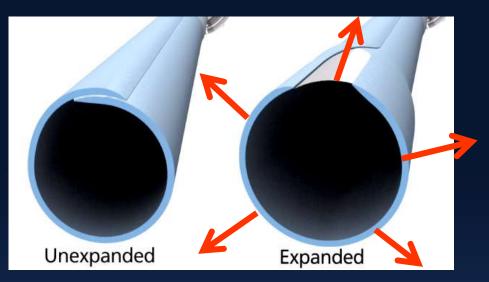
2004

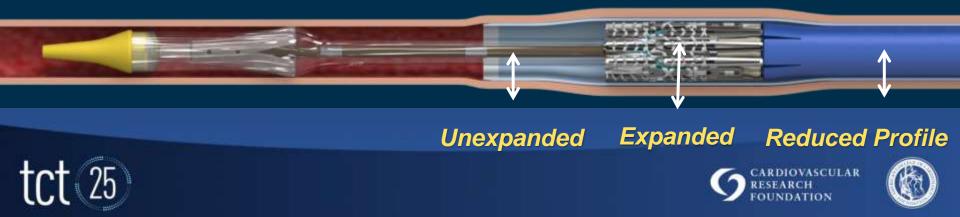
Cribier-Edwards™ THV 23mm

2007

Edwards SAPIEN™ THV 23 mm and 26 mm

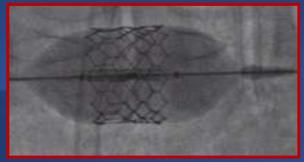
2010


Edwards SAPIEN XT ™ THV 23 mm, 26 mm, and 29mm



The New Edwards eSheath

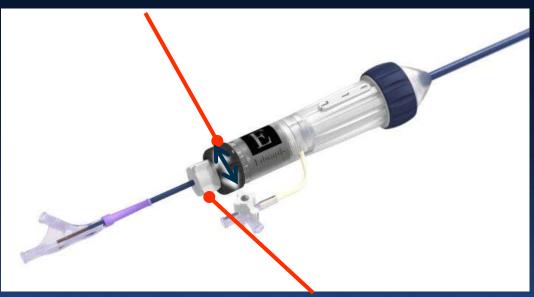
The eSheath expands from 14-16F to 18-20F which facilitates smooth delivery system passage, then returns to a reduced profile once the valve has passed through the sheath

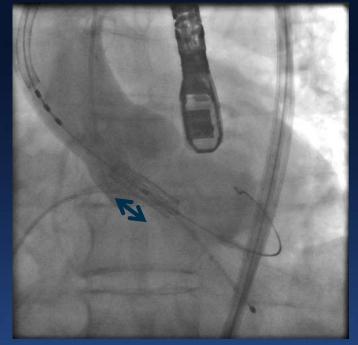

SAPIEN 3 Transcatheter Heart Valve

20, 23, 26, and 29 mm sizes

Bovine Thermafix Tissue Leaflets

External Sealing Ring


Balloon-expandable Cobalt Chromium Frame with larger landing zone



Commander (TF) Delivery System

Final valve positioning controlled with fine adjustment wheel

Button-less locking mechanism

CENTERA Transcatheter Heart Valve

23, 26 and 29mm sizes

Bovine Pericardial Tissue Leaflets

Self expanding Nitinol Frame

tct 25

Edwards CENTERA Delivery System

Delivery System

Distal End

 Motorized delivery system designed for single operator use

- Repositionable
- Delivered through a 14 Fr eSheath
- Transfemoral and subclavian approach
- Convenient storage (dry leaflet technology) and shelf-life

Edwards HELIO AR Project Implant Technology

1

Frame

Sapien XT Valve

The native leaflets are captured between the SAPIEN XT and the Frame

Edwards AR Device: First-in-Human Procedure

Implant

Alignment

TF Delivery of Frame

TA Delivery of SAPIEN XT valve

Guide SAPIEN XT valve through the native valve

Align SAPIEN XT valve and Frame

Deploy **SAPIEN XT** valve

Balloon

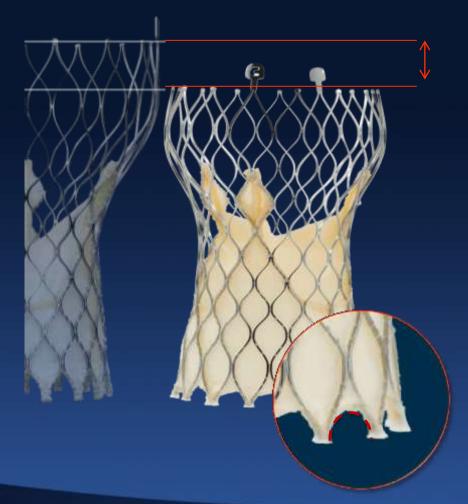
Inflation

Confirmatory Angio

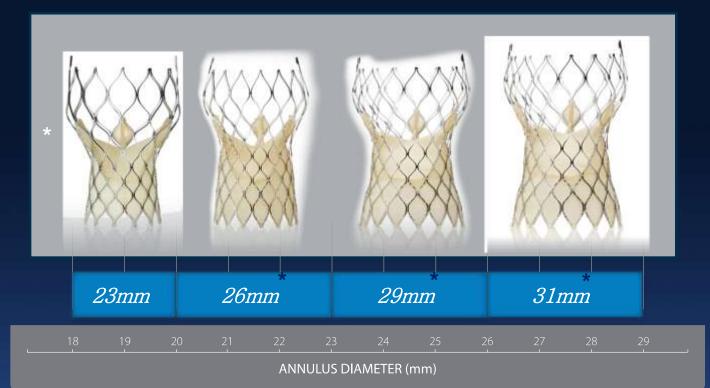
Confirm

placement

Orient the Frame behind the native leaflets and in the base of the aortic cusps

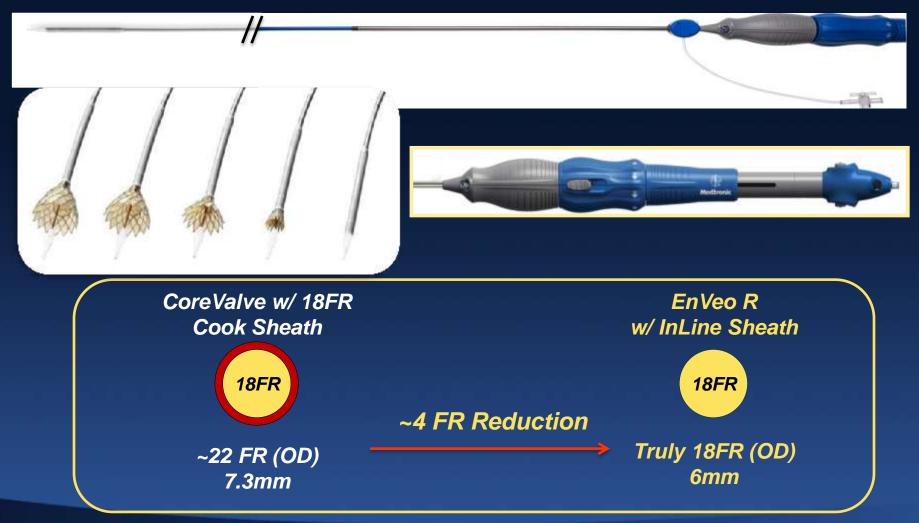


Medtronic CoreValve Evolut R



- Outflow shortened and redesigned
- More consistent radial force
- Extended skirt at inflow
- Optimized cover index
- Optimal Implant Depth: ~3mm
- Porcine pericardium
- Supra-annular function
- Facilitates post-TAVI coronary access

Medtronic CoreValve Evolut R System


Design Goals

- Full annulus range (18 29+mm)
- Anatomical fit for annular sealing
- Less traumatic inflow angle to reduce conduction disturbance
- Optimized frame design and new Nitinol materials for Advanced Durability

EnVeo R Delivery System Recapturable, Retrievable, Repositionable

Medtronic Engager Valve Design

- Control arms
- Self-expanding nitinol frame and polyester skirt
- Supra-annular valve function
- Bovine pericardial tissue

True anatomic alignment

Engager TA Delivery System

- Tactile control during deployment
- o 29 Fr equivalent TA delivery system
- Integrated introducer sheath
- Three step deployment

The outer diameter of the integrated sheath is 10.7 mm

Engager Direct Aortic Delivery System

The delivery system is designed for aortic access using a mini-sternotomy or mini-thoracotomy

Control Arm & Outflow Release Knob

2 Safety Stop -Allows for Commissure Post Release Optional Accessories :

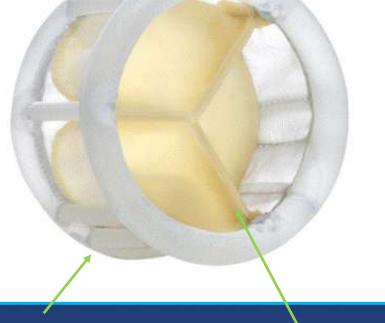
Tuohy Borst Suture Collar

Inflow Skirt Release Knob

Ergonomic Front Grip

New TAVI Devices

Other CE Approved Devices




Direct Flow Valve – Design

Minimized Risk of Aortic Regurgitation

- Double-ring design for a secure and durable seal
- Complete hemodynamic assessment before final implantation
- Unlimited repositioning for optimized valve placement
- The valve is fully retrievable

Ventricular ring

Bovine pericardial leaflets

Direct Flow System – Design

Precise valve positioning and reduced hemodynamic instability

- Positioning wires allow for controlled adjustments of valve position
- Immediate valve competency upon expansion
- Minimum to no contrast necessary
- No rapid pacing required during positioning
- No post-dilatation used

Treatment range:

- 25mm valve treats 21-24mm annulus
- 27mm valve treats 24-26mm annulus

Flexible, metal-free frame

> Positioning wires

Immediate valve competency upon expansion

ACURATE TF[™] Aortic Bioprosthesis

SELF-EXPANDING NITINOL

STABILIZATION ARCHES

Flexible Self-aligning

UPPER CROWN

Supra-annular anchoring Stable positioning Tactile feedback

LOWER CROWN

Minimal LV protrusion Low risk of conduction defects

Conforms to native anatomy 3 sizes: 21mm to 27mm

PERICARDIAL SKIRT

PERICARDIAL LEAFLETS

Porcine pericardium

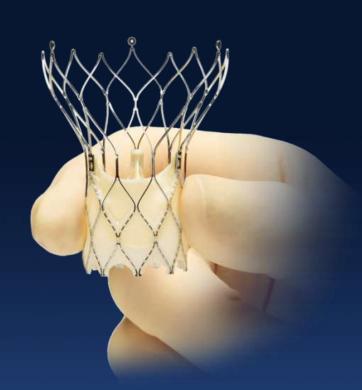
Lower profile

Inner & outer skirt acts as seal to prevent PVL

ACURATE TF[™] 3-Step Implantation

Initial Alignment

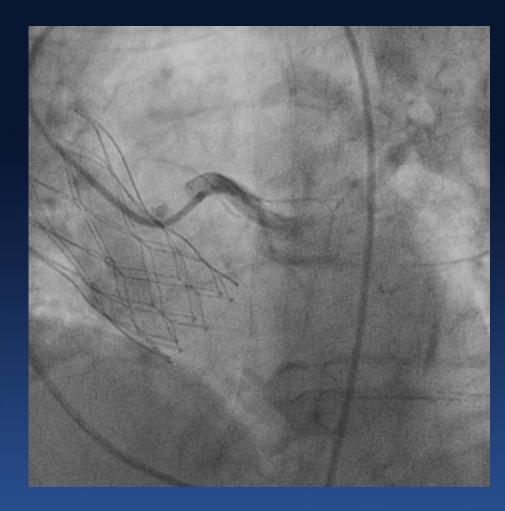
1. Open upper crown & gentle pressure forward


2. Open stabilization arches

3. Open lower crown for full deployment

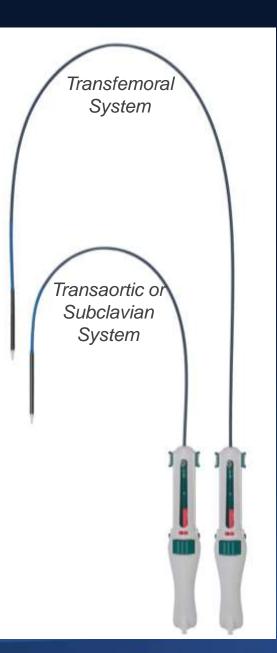
Portico Valve Design Features

- Self expanding stent design: fully repositionable and retrievable
- Bovine pericardium leaflets (intra-annular)
- Porcine pericardium sealing cuff
- Both leaflets and cuff are treated with LinxTM AC treatment*
 - Same anticalcification technology used on St. Jude Medical surgical aortic tissue valves
- 23, 25, 27 and 29mm valves



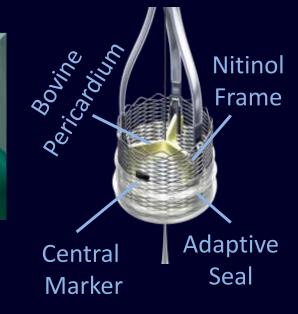
Portico Valve Design Features

- Large stent cells allows access to coronary ostia
- Annular placement minimizes conduction issues
- Improved seal zone to reduce PVL

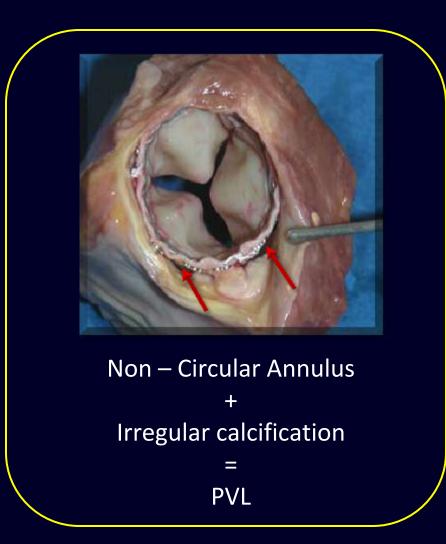


Portico Trans-aortic or Subclavian Delivery Systems

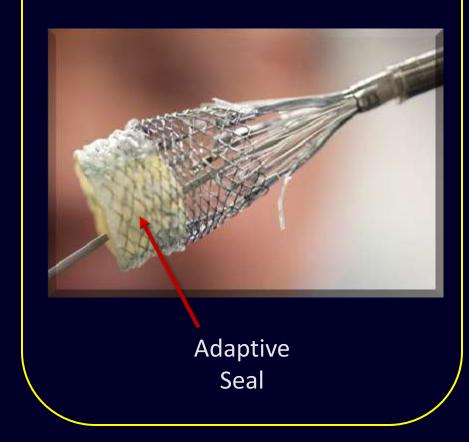
- Compatible with 18 F introducer sheath
- Similar design to Transfemoral delivery system
 - 65cm working length


Lotus Valve System Design Goals

Preloaded delivery system

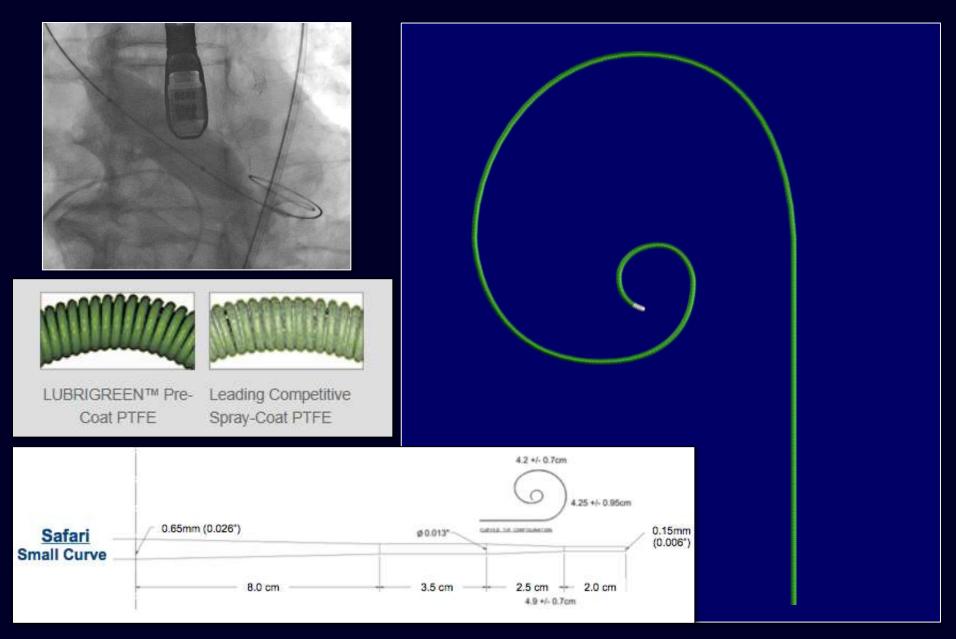


Intuitive handle design



- Deployed via controlled mechanical expansion
- No rapid pacing
- Functions early
- Central radiopaque marker to aid precise placement
- Fully repositionable and retrievable prior to release
- Adaptive seal to minimize paravalvular leak

Lotus Valve System Design Goals Minimize Paravalvular Leakage (PVL)



Adaptive seal to mitigate PVL

Lotus is an investigational device and not for sale in the US. CE mark received 2013. Information for the Lotus Valve System is for use in countries with applicable product registrations

Safari Guidewire

The Safari™ guidewire is manufactured by Lake Region Medical and distributed by Boston Scientific Corporation

Transapical JenaValve TAVI system

The JenaValve prosthesis

		R R 11
Deployment	Self expanding Native porcine	
Stent Material	Nitinol	Feelers with
Valve Material	Native porcine aortic valve	Tantalum markers
Skirt Material	Porcine pericardium	Lower stent part clips valve onto
Valve Sizes	23, 25, 27 mm	the native leaflets
Annulus Range	21-27 mm	Porcine pericardial skirt to prevent PVL

Features

- Feeler guided, anatomically correct positioning
- JenaValve clipping mechanism embraces native AV cusps
- Enables valve deployment without rapid pacing
- Low risk of coronary obstruction

Eyelets

Transapical JenaValve TAVI system

Cathlete plus[™] Delivery System: CE Mark September 2013

Access route Catheter Transapical

- Sheathless insertion
- New: hydrophilic coating of tip and shaft

New handle

- Intuitive rotational 3 step deployment
- · Facilitates full focus on operative field and
- One safety button ensures stepwise deployment

Transapical JenaValve TAVI System

Easy 3 step controlled implantation

Step 1 Release of positioning feelers Step 2 Clipping of AV cusps Step 3 Full deployment

JenaValve – the only TAVI system worldwide with CE mark for Aortic Regurgitation

Successful Treatment of Pure Aortic Insufficient with Transapical Implantation of the JenaVal Galow Boloffiel[®] Dynamics Mambrill[®] Christian Nilsaur[®] Thomas Ked[®] Rializa

PROFECT PRODUCTS CONTRACTOR PROVIDENT	Contraction of the second s	
Che, le Californic de Targer, Sermer Reet Long Genery	Munich, Address for some perioden MD, Cher for Gerlinsse der Lanerthis 10, 50% Munic	Surgers San A. Garring (

Transapical Implantation of a Second-Generation Transcatheter Heart Valve in Patients With Noncalcified **Aortic Regurgitation**

Moritz Seiffert, MD,* Patrick Diemert, MD,† Dietmar Koschyk, MD,†

CASE REPORT

aortic valve (JenaValve) implantation for severe aortic and aortic aneurysm

off, MD, Christian Pretter, MD, Ellish Schifer, MD, and Ralf Bader, MD, Hamburg,

env actic valle implicitation has be option for proton motor mechanics ight this or are not operative cand-

September 16, 2013

Abstract Reyunede

· anticiput · transpitution avtic value implantation tatigké

Introduction

Transistication acardit value of developed for partners with to high surgicial risk. Methoday inco the native value calibum. We is ginal Jow/Whe Implectation instance without ratio a

Case Description

A 71 year old fintally parties arts multimy. To pair white becaut mapping with an totteLAD 6 statutetion Par without residua to 2004, silver aptera, and Topochenesic and interior, the particul and manciential infanction, Commun.

continuous mat, and higher mate menance of a serve small which was 10 mm, and the prevention right commany artisty (BCK), and a TEX stemple of a small 43 non. The dimensions were sorthe marginal houses without as sortion for an incomendate with 25-mm (includer. The incondum) stinter bypas. The repeatedly reported symptomics angles, standard arting for thankapical and followed by documented ICC determation with IT and Painting of the relevant of the teprine decision Areput angography mended repro- wire accental at the first attem

wated in other strepted after residue Report 15 (2112)

E-Casing Thermon Verified 40-

Clear Adhal works for eith Gebruch vice Hermit Braubige bewilgereit, Verviellatigung nur wit Zu-

JENAVALVE TAVI SYSTEM RECEIVES EXTENDED CE MARK APPROVAL FOR TREATMENT OF AORTIC INSUFFICIENCY

for instant monother anomalies, the the loss of the order cases with

interest and revealed at unlarge as 26 mill in diamthe state of the second st B of 5.5% and a Society of 1%, the tasked clearly had procedure. During distainsaidy setting the law with the side of progress and

possible range of the apenyon. It because clear that the

patient had been admitted to moder department of taxilar

super's before, where surgery had been downsel and she had also estuand it. The potient had infitted toopital against

notical advice. After further discussion with cashia: sur-

genes and candiologists of the beast iteas, the palaest would

coupling units to a minimum.

sky ager to a moustleter approach. A manapual whe

planation was placed to educe "coorder" with the av-

The procedure was performed in the hybrid operating

most with a track consulting of card-straping and cardiocho-

ncc sugers. The transpiral scene was prepared in the

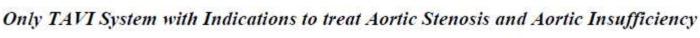
typisst way. The apex was purchased in the middle of the

replacement after evaluation by an interdisciplinary heart team (logistic EuroSCORE [European System for Cardiac Operative Risk Evaluation) range 3.1% to 38.9%). Procedural and acute clinical outcomes were analyzed.

Results Implantation was successful in all cases without relevant remaining aortic regurgitation or signs of stenosis in any of the patients. No major device- or procedure-related adverse events occurred and all 5 patients were alive with improved exercise tolerance at 3-month follow-up.

Conclusions Noncalcified aortic regurgitation continues to be a challenging pathology for transcatheter aortic valve implantation due to the risk for insufficient anchoring of the valve stent within the aortic annulus. This report provides first evidence that the JenaValve prosthesis may be a reasonable option in these specific patients due to its unique stent design, clipping the native aortic valve leaflets, and offering promising early results. (J Am Coll Cardiol Intv 2013;=:=-=) © 2013 by the American College of Cardiology Foundation

an presented at our institution with from severe andic regarginging A


long, budding, finites they be the set of the province and proved and proved Othe Rodnakog-Codill, Month, Carineo A. M. Landskinsche des M. R. K. Langeler Galaged, Will, Sensitivan of Galiay Surgery.

Littleases 5 300 Harris Dates

other American In Taxa a Report 101110 The Journal of Thorack and Cardlenecular Surgery "Volume 18, Number 18

DIOVASCULAR

New TAVI Devices

Just Beginning...

Colibri TAVR System

- 1. Balloon expandable design
- 2. Folded membrane valve design
- 3. Dry leaflet technology; premounted (long shelf life)
- 4. 14 F delivery sheath

Thubrikar TAVR System

- Single bovine pericardial cut-out used for all three leaflets
- The valve has commissure posts
 - Provides proper opening
 - Provides proper coaptation surface
- Valve design minimizes sutures
 - No suture holes in moving leaflets (similar to surgical valves)
- 25mm OD Nitinol frame
 - Designed for up to 23mm
 annulus
 - Designed for stronger radial force 19-20 mm height

Venus A-Valve TAVR System (China)

- Self-expanding frame
- Porcine pericardial valve
- Supra-annular
- 23, 26, 29 and 32mm

MyVal TAVR System (India)

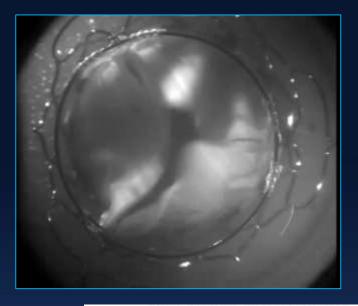
- Transcatheter balloon expandable aortic valve system
- Leaflets crafted out using a single piece of bovine pericardial patch
 - "Japanese Origami" technique aiming to minimize tissue stress
- Tissue valve is mounted on a Cobalt Chromium frame
 - Tissue skirt protected with Polyethylene Terephthalate (PET)

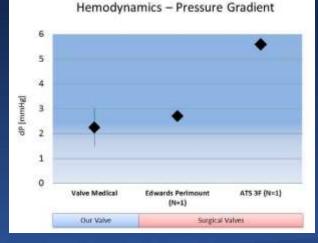
Device Components

- 1. Nitinol self-expanding frame module inserted in optimal annular location
- 2. Valve module is reconstituted in ascending Ao
- 3. Valve module is docked to frame

"Unique" Valve Medical Design Features

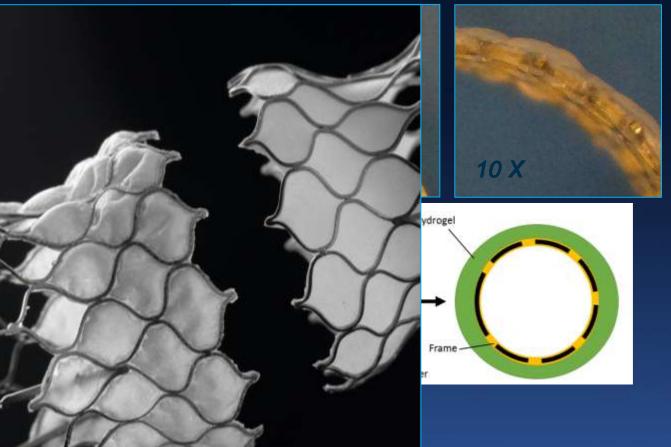
- Ultra-low profile 12 French delivery system for all valve sizes
- Modular design (frame and valve separate)
- Folded valve design (not crimped)
- 3-D valve leaflet construction
- In-situ docking (valve to frame in ascending Ao)
- Coating to reduce Para-valvular regurgitation
- Temporary valve (in descending Ao) for safety





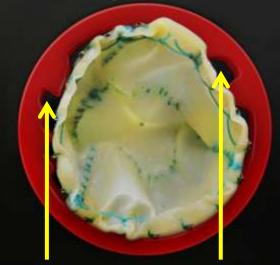
Optimized Leaflet Performance

- Improved valve orifice areas (and lower gradients)
- Superior closing and coaptation profiles

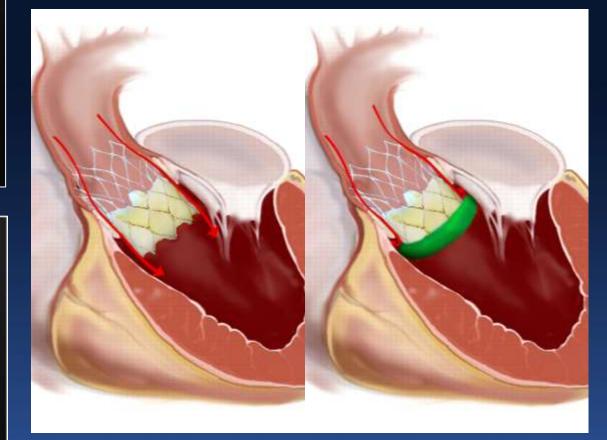


Polymer Coating Para-valvular leak prevention

- Two-layer pol
- External hydr
- Frame stored
- Following imp swells outwar



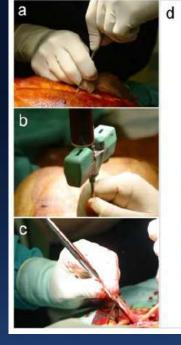
current gen tissue skirts

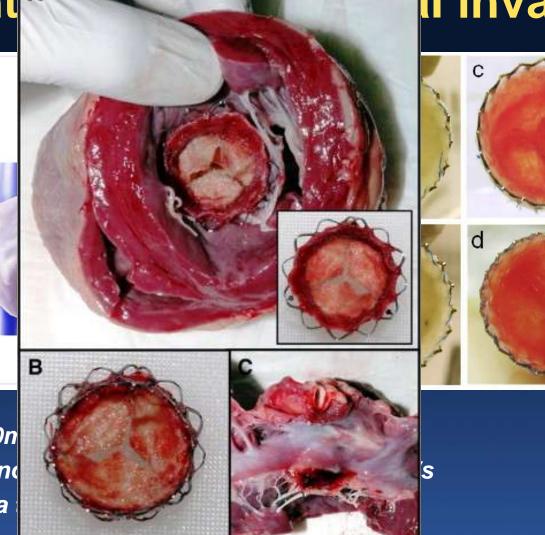

paravalvular leak sites

next gen "expandable" skirts

paravalvular leak sites sealed

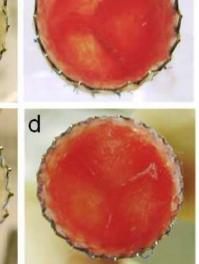
Endoluminal Sciences





Injectable Living Marrow Stromal Cell-based Autologous Tissue Engineered Heart Valves – First Experiences with a One-Step Intervention in Primates

Single int



Harvest of ~100n Isolation of mon Implantation via

allowerses.

*WEBER B, HOERSTRUP SP et al. (2011) European Heart J

New TAVI Devices

Final Thoughts

New TAVI Devices

- There is striking innovation and diversity in TAVR designs attempting to address the main current clinical and technical limitations.
- The current market leaders (Edwards and Medtronic) have developed impressive next generation pipeline technologies.
- There are 5 new TAVR systems already with sufficient clinical data to have achieved CE approval... and some have interesting differentiating features.
- Additional novel systems are in development focusing on enhanced deliverability, durability and operator convenience (ease-of-use).

